Using Argo to validate remote sensing missions

With its more than 3500 automatic profilers, the Argo array is one of the most important component of the Global in-situ Ocean Observing System. The array provides measurements of temperature and salinity profiles down to 2000 m. These data are rapidly expanding the historical database of the ocean sub-surface (specially in the case of ocean salinity) and are providing novel information about the ocean’s vertical structure and its variability. Moreover, these data allow real-time monitoring, model-constraining and contribute to calibration and verification efforts.

Number of available profiles from January 2005 to December 2014: Shown are the total number of profiles, the delayed mode profiles as for Apri 27, 2015 and the number of delayed mode profiles with salinity.

Figure 1: Number of Argo profiles from January 2005 to December 2014: Shown are the total number of profiles, the delayed mode profiles as for April 27, and the number of delayed mode profiles with salinity.

The Euro-Argo ( research infrastructure, designed to coordinate the European contribution to Argo, is part of the European Strategy Forum on Research Infrastructures (ESFRI). Euro-Argo is expected to provide additional 50 floats per year and support about the 25% of
the Argo array.

…read more

5+ years of fine-scale soil moisture estimates available!!

At Barcelona Expert Center (BEC) we are able to provide a Level 4 (L4) Surface Soil Moisture (SSM) product with 1 km spatial resolution that meets the requirements of land hydrology applications. To do so, we use a downscaling method that combines highly-accurate, but low-resolution, SMOS radiometric information with high resolution, but low sensitivity, visible-to-infrared imagery to SSM across spatial scales. A sample L4 SSM map from September 1, 2014 (6 AM) is shown in Figure 1.

Fig. 1. SMOS-BEC L4 product from September 1, 2014 (6 AM).

This downscaling approach was first presented in [1] along with results of its application to a set of SMOS images acquired during the commissioning phase over the Oznet network, South-East Australia. Using reprocessed SMOS data obtained with the latest L1 and L2 processors, we have further developed and validated this technique; we now use SMOS polarimetric and multi-angular information in the downscaling method, which results in improved fine-scale soil moisture estimates [2].
…read more

Barcelona World Race 2014-2015

The 2014-15 edition of the Barcelona World Race (BWR) has had an active ocean observation contribution that will provide new data about the ocean water dynamics and its environmental quality.

In addition to contribute to the build-up of the Argo system by deploying eight Argo profilers during January 2015, the One Planet, One Ocean & Pharmaton ship carried a Sea Bird SBE37-SI MicroCAT instrument to collect continuous (every minute) sea surface temperature and salinity measurements.

Photography by Mireia Perelló from

The One Planet, One Ocean & Pharmaton. Photography by Mireia Perelló from

…read more

SMOS in a Massive Open Online Course

The Barcelona World Race Ocean Campus has organised five courses on Instructure Canvas platform to provide the 2014-2015 round the world regatta followers with basic knowledge about the science of oceanography and other subjects like meteorology, telemedecine, chronobiology or nutrition. One of these MOOCs is “Oceanography: a key to a better understanding of our world” that includes a module on ocean remote sensing instructed by Jordi Font. This free course will start on April 20th and does not require previous knowledge in oceanography. Feel free to join us in this worldwide adventure!

NASA successfully launches its Soil Moisture Active Passive (SMAP) satellite

On January 31st, NASA successfully launched the SMAP satellite onboard a United Launch Alliance Delta II rocket. The satellite, designed to collect high resolution soil moisture maps on a global scale every two to three days, will improve the ability to forecast droughts, forest fires and floods, and will help in crop planning and rotation. On February 24th the reflector antenna was successfully deployed and in the following days the first radiometric data have been acquired.

Image: NASA, United Launch Alliance


In order to obtain detailed soil moisture measurements of the entire world, SMAP is placed in a near-polar sun-synchronous orbit, allowing the observatory to use Earth’s natural spin to maximize the area that can be scanned by the satellite’s instruments. The orbiter will use its L-band radar and L-band radiometer to scan the top 2 inches (5 cm) of our planet’s soil with a resolution of around 31 miles (50 km).

…read more

SMOS-BEC hosts the 17th meeting of the Ocean Observations Panel for Climate and the 3rd meeting of the Global Ocean Observing System Steering Committee


From July 21 to 26, SMOS-BEC host at ICM the 17th meeting of the Ocean Observation Panel for Climate (OOPC) and the 3rd meeting of the Global Ocean Observing System (GOOS). The mission of OOPC is to develop recommendations for a sustained global observation of the oceans in relation to climate, while GOOS is a permanent global system for observations, modeling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans, including living resources; continuous forecasts of the future conditions of the sea as far ahead as possible, and the basis for forecasts of climate change. GOOS is made of many observation platforms including 3000 Argo floats, 1250 drifting buoys, 350 embarked systems on commercial or cruising yachts, 100 research vessels, 200 marigraphs, and more than 200 moorings in open sea.

…read more