Print This Post Print This Post

New methodology to estimate Arctic sea ice concentration from SMOS combining brightness temperature differences in a maximum-likelihood estimator

Monitoring sea ice concentration is required for operational and climate studies in the Arctic Sea. Technologies used so far for estimating sea ice concentration have some limitations, for instance the impact of the atmosphere, the physical temperature of ice, and the presence of snow and melting. In the last years, L-band radiometry has been successfully used to study some properties of sea ice, remarkably sea ice thickness. However, the potential of satellite L-band observations for obtaining sea ice concentration had not yet been explored.

In this paper, we present preliminary evidence showing that data from the Soil Moisture Ocean Salinity (SMOS) mission can be used to estimate sea ice concentration. Our method, based on a maximum-likelihood estimator (MLE), exploits the marked difference in the radiative properties of sea ice and seawater. In addition, the brightness temperatures of 100 % sea ice and 100 % seawater, as well as their combined values (polarization and angular difference), have been shown to be very stable during winter and spring, so they are robust to variations in physical temperature and other geophysical parameters. Therefore, we can use just two sets of tie points, one for summer and another for winter, for calculating sea ice concentration, leading to a more robust estimate.


After analysing the full year 2014 in the entire Arctic, we have found that the sea ice concentration obtained with our method is well determined as compared to the Ocean and Sea Ice Satellite Application Facility (OSI SAF) dataset. However, when thin sea ice is present (ice thickness ≲ 0.6 m), the method underestimates the actual sea ice concentration.

Our results open the way for a systematic exploitation of SMOS data for monitoring sea ice concentration, at least for specific seasons. Additionally, SMOS data can be synergistically combined with data from other sensors to monitor pan-Arctic sea ice conditions.

The Cryosphere, 11, 1987-2002, 2017


Print This Post Print This Post

BEC joins public condemnation of the use of violence against Catalan people


Demonstrations against the violence all over Catalonia, October 3rd, 2017

On October 1st, 2017, many Catalans waited in front of the voting stations to participate in a referendum to decide the future of Catalonia. The Spanish Constitutional Court had suspended the referendum, but nevertheless the regional government decided to go ahead with the poll. The response by the Spanish Government was to concentrate in Catalonia a massive amount of anti-riot police squads during the previous days, with the order of prevent the voting to take place. Many were convinced that they would never dare to attack the peaceful hundreds of thousands of citizens, that they will just take the ballots and ballot boxes away, and that the voting day will be just a political demonstration, a tour de force between Catalan independentists and the Spanish Government. They were deadly wrong.

The extreme use of the force by the Spanish policemen terrified the people that was just standing up in front of them, raised arms and singing. The media have reproduced horrifying witnesses of the brutal, unjustified and disproportionate use of the strength against the population that just wanted to express a political opinion. Many of us at BEC know well what happened, as we were at the poll stations and saw the indiscriminate use of violence or waited in the lines in the anguish of knowing that they could appear at any time and attack us in sight with no reason.

BEC does not endorse any political position, as in our team all the opinions can be found; but this disparity of opinions does not prevent a friendly respect of each other, as it happens in mature democratic societies. This has nothing to do with what we saw past Sunday.

Visca Catalunya!

The BEC team

Print This Post Print This Post

Celebration of BEC 10th Anniversary

Past June 19th 2017 we celebrated the 10th anniversary of the foundation of the Barcelona Expert Center.

We were honored of counting with the presence of the  Minister of Agriculture, Livestock, Fishing and Food of Generalitat de Catalunya, Ms. Meritxell Serret, and of the deputy Vicepresident for Scientific-Technical Areas of CSIC, Dr. Victoria Moreno, who highlighted the institutional importance of BEC for CSIC and for Catalonia.

20170619_10años BEC (58)

…read more

Print This Post Print This Post

Advanced SSS products now available with global coverage!

Objectively Analysed SSS for the period May 27th to June 4th, 2014

Objectively Analysed SSS for the period May 27th to June 4th, 2014

In a continuous effort to improve the quality of our data and provide a better service to our users, we have made a new brand of advanced SSS products available. In contrast with previous datasets, the new products have global coverage and are generated for a 6-year period.

The new products are based in the debiased non-Bayesian method, as the previous ones. Some minors issues regarding the definition of the SMOS-based climatologies have been improved for the production of this new dataset.

…read more

Print This Post Print This Post

Debiased non-Bayesian retrieval: A novel approach to SMOS Sea Surface Salinity

We are pleased to inform you that our paper “Debiased non-Bayesian retrieval: A novel approach to SMOS Sea Surface Salinity” has recently appeared in Remote Sensing of Environment.

In the paper, we present a new method to process SMOS data in order to obtain more precise, less biased values of Sea Surface Salinity (SSS). With the new methodology, we do not only improve the overall quality of SSS data, but we also obtain valid retrievals in areas previously deemed as inaccessible, such as the Mediterranean.

…read more

Print This Post Print This Post

SMAP SSS provided by REMSS: v1.0 vs v2.0

Outliers distribution is very homogeous in both versions

Fig. 1: Outliers distribution (red dots) is homogeneous in both versions. The nearest points to the coast are also excluded from statistics.

Since last September, Remote Sensing Systems (REMSS) is producing version 2.0 of the Level 2 and Level 3 Sea Surface Salinity products from SMAP. One year ago, we published in this blog a brief study on the validation of  version 1.0 of the 8-day L3 SSS maps provided by REMSS (see Preliminary validation of 8-day SMAP L3 Salinity product V1.0 for more information). Now, in order to assess the improvements of this new version, we present a small comparison between these two versions of the 8-day SSS L3 maps. Part of this study was included in the V2.0 Release Notes document. The validation has been made using as reference field the 7-day global ocean 0.25-degree SSS FOAM product generated by Met Office and distributed by Copernicus.

…read more

Print This Post Print This Post

SMOS 7th Anniversary


On November 2nd, 2016, SMOS mission accomplished a new feat: the mission has now been operating for seven years!

Designed for a nominal lifetime of three years plus an extension of two years, SMOS has overcome the expectations and it is now headed for a third extension period. And the instrument is still behaving well, giving rise to new products and applications on land, ocean, and cryosphere, and even for atmospheric applications.

Congratulations to SMOS and to ESA. Long life to SMOS!

The BEC team.

Print This Post Print This Post

Can SMOS observe mesoscale eddies in the Algerian basin?

The circulation in the Algerian Basin is characterized by the presence of fresh-core eddies that  propagate along the coast or at distances between 100-200 km from the coast. Significant improvement in the  processing of the Soil Moisture and Ocean Salinity (SMOS) data have allowed to produce, for the first time, satellite Sea Surface Salinity (SSS) maps in the Mediterranean Sea that capture the signature of Algerian eddies. SMOS data can be used to track them for long periods of time, especially during winter. SMOS SSS maps are well correlated with in situ measurements although the former has a smaller dynamical range. Despite this limitation, SMOS SSS maps capture the key dynamics of Algerian eddies allowing to retrieve velocities from SSS with the correct sign of vorticity. These results have been recently published in Geophysical Research Letters (Isern-Fontanet et al. 2016).

…read more

Print This Post Print This Post

New operational SSS products: version 2.00

L4 SSS product. The new binned debiased SSS product is fused with OSTIA SST daily, The animation corresponds to the full year 2015.

L4 SSS product. To product it, the new OA debiased SSS product is fused with OSTIA SST daily. The animation corresponds to a period from February to July 2015.


In a continuous effort to bring the higher quality products to our users, BEC is happy to announce that a new version of BEC SSS products (v2.00) has been put into operations.

In the new operational version, Land Sea Contamination has been mitigated by means of the empirical salinity debiasing method proposed in [Olmedo et al., 2016]. This leads to higher quality products that can be used for many different purposes. This new dataset is available at BEC products – Available variables – Sea Surface Salinity – Operational V2.0 section or by clicking here.

…read more

Print This Post Print This Post

Preliminary SWDI maps using the BEC L4 soil moisture product

The Water Resources Research Group of the University of Salamanca has developed a new agricultural drought index, the so-called Soil Water Deficit Index (SWDI) [1], [2], based in soil moisture and soil parameters. Using the high resolution BEC L4 soil moisture product [3] as an input of the SWDI, agricultural drought maps of Zamora province (west of Spain) were derived (Fig. 1). With this product, agricultural drought conditions in the most important agricultural regions in Spain will be monitored.

The results of this research will be published soon, so stay tuned!


Fig.1. SWDI-SMOS map at 1 km spatial resolution of Zamora province showing wet (02/12/2010, Up) and dry (24/08/2011, Down) conditions.

Fig.1. SWDI-SMOS map at 1 km spatial resolution of Zamora province showing wet (02/12/2010, Up) and dry (24/08/2011, Down) conditions.

[1] Martínez-Fernández, J., González-Zamora, A., Sánchez, N., & Gumuzzio, A. (2015). “A soil water based index as a suitable agricultural drought indicator.” Journal of Hydrology, 522, 265-273.

[2] Martínez-Fernández, J., González-Zamora, A., Sánchez, N., Gumuzzio, A., & Herrero-Jiménez, C.M. (2016). “Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index.” Remote Sensing of Environment, 177, 277-286.

[3] Piles, M., Camps, A., Vall-llossera, M., Corbella, I., Panciera, R., Rüdiger, C., Kerr, Y.H., & Walker, J. (2011). “Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data.” IEEE Transactions on Geoscience and Remote Sensing, 49, 3156-3166.